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In this paper we consider the relatively new preconditioned 
generalized minimal residual method, restarted every m iterations 
(GMRES(m)), for the solution of three-dimensional elliptic equations. 
Large, sparse, non-symmetric matrices are involved. The particular 
equation of interest is the quasi-geostrophic “omega” equation, often 
used in meteorology to compute vertical motion. The GMRES(m) 
method is tested with different preconditioners for the solution of two- 
and three-dimensional elliptic equations. The method requires no 
relaxation parameters and has no restrictions on the size of the 3D grid. 
GMRES can be used for more types of matrices than other methods 
such as SOR. Numerical results show that Jacobi preconditioned 
GMRES(m) performs best for 3D and high resolution problems among 
five different preconditioners tested, while ILU factorization of the 
partial or whole matrix A, as a preconditioner, is good for 2D and low 
resolution problems. The SOR preconditioners for the GMRES(m) 
method, with optimal relaxation parameters, are not as efficient, and the 
best choice for the relaxation parameter in SOR preconditioning is not 
the same as the best choice for the simple SOR method. An algorithm 
for using the preconditioned GMRES(m) method is presented. 
0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The rapid advances in all phases of dynamical-numerical 
weather forecasting as well as in other areas of computa- 
tional fluid dynamics have created more complex and larger 
systems of equations. Therefore, more efficient techniques 
for solving them are necessary. 

In this paper, we consider a relatively new, efficient, and 
robust general iterative procedure for solving large, sparse 
systems of linear algebraic equations arising from an old 
meteorological problem. Our purpose is to demonstrate 
that the preconditioned generalized minimal residual 
method (GMRES) can be useful as a general-purpose solver 
for linear (elliptic) partial differential equations (PDEs). 

Consider the system of equations 

Ax=b, (1) 
where A is a real, nonsinguiar n x n matrix, b is a given 
vector of order n, and the value of the vector x of order n is 

’ Contribution from the Missouri Agricultural Experiment Station. 
Journal Series Number 11221. 

sought. Apart from knowing the general method used to 
simulate these problems, we will assume here that almost 
nothing is known a priori about the mathematical proper- 
ties of system (1). We do know, however, that our system is 
large, sparse, and, in general, nonsymmetric. 

Many scientific and engineering problems involve the 
solution of such a set of linear equations at some stage of 
analysis. The large, sparse system of linear equations, in our 
case, arises after a second-order finite-difference discretiza- 
tion of the quasi-geostrophic omega equation, which is used 
for determining the three-dimensional (3D) distribution of 
atmospheric vertical motion. 

In general, there are two categories of linear equations 
solvers: direct and iterative methods. For problems arising 
from PDEs in 3D domains, direct methods can be too 
costly. Advantages of iterative methods for solving large, 
sparse systems lie in the fact that the matrix factorization of 
direct methods is avoided, with consequent substantial 
saving iri storage, and that an approximate solution of (1) 
can be extracted in less than n (order of matrix) iterations, 
thus saving computing time (e.g., [29]). 

For systems such as (l), however, very efficient direct 
methods also have been developed, which are called fast or 
fast direct methods. They are usually based on the fast 
Fourier transformations or the method of cyclic reduction 
(e.g., [S;p. 2251). Some of these algorithms are utilized in 
the software package FISHPAK [S, 311. However, these 
techniques are limited primarily to systems which arise from 
separable self-adjoint boundary value problems, and the 
grid intervals must be determined according to the products 
of a small number of prime numbers [S]. 

Most iterative methods for solving (1) are developments 
of one of two basic ideas, namely Jacobi’s method, and the 
conjugate gradient (CG) algorithm. For recent reviews, see 
[9, 17, 353. According to Young [35], Wachspress [37], 
Roache [27], and many others, elliptic PDEs have been 
solved numerically by the very popular successiue over- 
relaxation method (SOR), based on Jacobi’s method. 
According to Haltiner and Williams [13, p. 1571 and 
Boisvert and Sweet [5, p. 2251, SOR is also the most 
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common method of solution used by meteorologists or fluid 
dynamicists, because of its easy implementation. 

The traditional SOR, however, is not an effective general 
solution technique for a linear equations system [35, p. 363. 
First, it requires the choice of the best over-relaxation coef- 
ficient yopt to optimize the rate of convergence of the itera- 
tion. In general, this is a very difficult problem. Theory for 
finding yopt only exists for some special classes of coefficient 
matrices [3, 17,26, 361. Even for special matrices, computa- 
tion of the extreme eigenvalues of the matrix for optimal 
convergence is usually as expensive as solving the linear 
equation system. For the relatively well-defined problem of 
the discretized elliptic equations, convergence can be 
affected greatly by an obscure “optimum” parameter value 
(e.g., [S, 13, 27, 331). Second, it needs a good initial 
approximation to the solution of (1 ), which is not always 
readily available. In addition to these, SOR is not 
guaranteed to converge when A is a nonsymmetric matrix 
(e.g., [12, p. 332; 261). Also, if diagonal elements of the 
matrix are sufficiently negative, SOR will not converge 
[ 13, p. 1663. Thus, it is apparent that SOR may not be the 
most appropriate technique to use in the solution of 
nonsymmetric, large, sparse linear systems. Moreover, 
according to Navarra [22], standard techniques similar to 
SOR that have been developed and used in meteorology 
cannot be applied to large linear problems [18]. Some of 
the other classical techniques used for elliptic boundary 
value problems, such as Guassian elimination, point 
iterative methods, are reviewed by Fulton et al. [7]. 

An extremely fast solution for (l), however, can be 
extracted by multigrid methods, which combine some of the 
classical iterative techniques with a subgrid refinement 
procedure. Multigrid and related methods form a new class 
of techniques which give the fastest known solution for a 
significant category of matrix problems. For a recent review 
on the multigrid methods see [7]. Fortran subroutines that 
solve linear elliptic PDEs using multigrid iteration techni- 
ques are utilized in a multigrid package MUDPACK by 
Adams [ 11. Both FISHPAK and MUDPACK are readily 
available from the National Center for Atmospheric 
Research. However, not only do the properties of the 
physical problem, the discretization, and the choice of the 
appropriate relaxation in some cases lead to a degradation 
of the performance of the multigrid methods, but also the 
usage of MUDPACK is possible if and only if the data 
satisfy the discrete compatibility condition. In other words, 
according to MUDPACK Version 1.2, February 1989 
documentation, the 2D or 3D domains data must be 
provided on uniform grids that have the form 
n~=p.2~+1,ny=q.2~+1,andnz=r.2~+1,wherep,q, 
r, and k are positive integers (p, q, and r preferably smaller 
than 5). For the problem we are considering here, our data 
are not able to satisfy these conditions. We, therefore, still 
need an algorithm which solves our problems to a desired 

accuracy by a “reasonable” amount of work and which has 
few restrictions. 

Although the CG methods do not require either estimates 
for the eigenvalues or an optimization parameter, the 
methods have not been used extensively on systems arising 
from the discretization of PDEs until recently. This is 
presumably because they required more storage and they 
were not significantly faster than SOR. Rapid improvements 
in CG algorithms and sparse matrix techniques, however, 
have made them more practical for use. (For more discus- 
sion see, e.g., [6, 143.) 

Although powerful CG algorithms exist for solving sym- 
metric systems of linear equations, efficient methods for 
solving large nonsymmetric systems are still rare [6,29]. 
There are three main approaches for the generalization of 
CG for nonsymmetric problems. One approach is based on 
transforming the nonsymmetric problem into a symmetric 
positive definite one, then using the CG method to solve the 
resulting system, called the normal equations (the CG itera- 
tion applied to the normal equations (CGN)). The CGN 
method is not always applicable in practice because it may 
require a large number of iterations to converge [ 15, 311. 
The biconjugate gradient method (BCG) is another one 
which re-interprets the CG algorithm, using a recurrence 
formula so that full orthogonalization is not necessary. The 
BCG method also may fail to converge or break down in 
many cases of practical interest [15, 31, 351. A recent 
extension of BCG, the conjugate gradient squared method 
(CGS), however, is found to be more efficient than BCG 
[31]. The other generalization is GMRES. It is a residual 
minimization method which basically results by the 
introduction of an optimality property into the Arnoldi 
algorithm. Like BCG it uses a Krylov subspace generated 
by A, but with full orthogonalization [28-301. 

According to Nachtigal et al. [21], among the many 
parameter-free matrix iteration techniques proposed for the 
solution of nonsymmetric systems of linear equations, the 
GMRES method is the most robust one. They test what 
they call the three leading methods, CGN, CGS, and 
GMRES, on eight different classes of matrices, and they 
found that GMRES always converged with a reasonable 
number of iterations. An empirical comparison with 
realistic computations is also given by Radicati et al. [25]. 
Their results also support those of Nachtigal et al.; GMRES 
is very robust and more efficient than the other methods for 
their physical problem. Games and Morales [lo] have 
shown that GMRES is a robust and successful technique for 
the solution of problems arising from oil-reservoir simula- 
tions. In addition, Navarra [22,23] also pointed out that 
Krylov subspace techniques, such as Arnoldi and GMRES 
can be useful for solving large linear systems resulting from 
the discretization of geophysical fluid dynamic problems. 
For more comparative performances of GMRES with other 
CG-like methods, see [28, 291. 
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Therefore, we have chosen the recently introduced 
iterative preconditioned GMRES technique in order to 
evaluate its utility in a meteorological problem. Moreover, 
since the theory and practice of GMRES and precondi- 
tioned GMRES are not well understood, because only 
limited numerical experiments have been done using them, 
particularly for real problems modelled by PDEs [6, lo], 
we will present and clarify some of the computational 
aspects of this method. Also, a comparison between some of 
the common preconditioners will be presented using 
GMRES, in order to shed some light on choosing a “good” 
preconditioner in real world applications. 

In Section 2, the basis for our system of linear equations 
is described. Some computational aspects of GMRES are 
given in Section 3. In the following sections, tests for pre- 
conditioned GMRES will be given to detect weaknesses, 
display strengths, and explore robustness. Conclusions are 
drawn for the choice between solvers in 2D and 3D in 
Section 5. 

2. MODEL PROBLEM AND 
METEOROLOGICAL CASES 

For weather forecasting, it is vital to be able to make 
deductions about the vertical motion, which typically is of 
the order of a few centimeters per second and which cannot 
be measured directly. Upward motion produces precipita- 
tion and plays an important role in the development of 
fronts and storms, etc. One method of getting the vertical 
motion involves inverting PDE using the output from a 3D 
forecast model. 

Our 3D, non-linear model employs 100 km (200 km) and 
0.5 km (1.5 km) horizontal and vertical grid lengths, respec- 
tively; an integration uses 54 x 62 x 30 (26 x 30 x 10) grid 
points in the east-west, north-south, and vertical direc- 
tions, respectively, in high resolution runs (and as numbers 
in parenthesis indicate, in low resolution runs). The domain 
of integration is a westeast re-entrant channel with rigid 
horizontal and vertical boundaries: 

where 1 is the nondimensional channel length. 
We are required to solve elliptic, 3D partial differential 

equations of the form 

[ 

a* a2 1 a2 - - axZ+@+~(~)2a~* 1 w(x, y, z) = F(x, y, z), (2) 

where F is a known forcing function, N2 is a known stability 
parameter, and the appropriate boundary conditions (BCs) 
are 

w(x, y, 0) = w(x, y, 1) = 0 

4x 4 1, y, z) = 4x9 y, z), 

where c( is any variable. 

We solve for w, the vertical motion. The vertical direction 
is z, the height. An example of such an equation is the so- 
called “quasi-geostrophic (QG) omega equation,” used to 
obtain the vertical movement of air [ 133. Knowing the 3D 
distribution of pressure at a given time, one can evaluate F. 
The distribution of temperature with height, averaged 
horizontally, is related to the stability of the atmosphere 
with respect to vertical overturning, and is the basis for N2. 
The greater the decrease in temperature per given height 
interval, the more prone is that atmospheric region to 
“instability” and the smaller is N2. Knowing F and N2, one 
solves the equation for the three-dimensional distribution 
of w. Regions of significant upward motion (w > 0) can lead 
to cloud formation and precipitation. Equation (2) is 
approximated by a system of linear equations evaluated on 
a three-dimensional grid. For an internal grid point ijk, 
away from any boundaries, our finite-difference approxima- 
tion for (2), to second-order accuracy, is given by 

+ &(w~k+,+wqk-l) 
k 

I+$+& > wiik = Ax* Ftjk. (3) 
k 

Equation (3), applied at each grid point, plus modified 
equations incorporating the boundary conditions, are to be 
inverted to obtain all wiik’s. 

The forcing function Fvk can be written as the sum of two 
terms, a “vorticity advection” and a “thickness advection” 
term. We solve Eq. (3) twice, once with each term of the 
forcing function; the two vertical motion solutions w  are 
added to get the total w. Each component of w  provides 
different information concerning the dynamics of the 
weather system. Here we discuss only results from the 
“vorticity advection” forcing term; the other forcing term 
gives similar results. 

Equation (3) requires BCs for w  at all boundaries; we 
have not discussed the northern and southern channel walls. 
If we write w(x, y, z) = W( y, z) + w’(x, y, z), where n is the 
east-west average and ( )’ is the deviation, we can split 
Eq. (3) into two elliptic equations, a 3D equation for 
w’(x, y, z), which looks like (3), and a 2D equation for W, in 
y and z. It turns out, from the BCs associated with the com- 
plete set of atmosphere simulation equations used to derive 
(3) the so called QG equations, that, at the northern and 
southern walls, w’ = 0. Thus the 3D w’ equation has com- 
plete BCs. For the 2D W equation we rederive an equation 
for the east-west mean streamfunction, for which the BCs 
are zero on the y and z boundaries. Solving this 2D elliptic 
streamfunction equation allows us to obtain W; we then 
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FIG. 1. Performance of the J-GMRES and the SOR methods as a function of the relaxation parameter y  and Krylov subspace dimension m. 

reconstruct W. In what follows, the “3D” and “2D” refer to 3. THE GMRES(m) METHOD AND 
these two elliptic equations, rather than to Eq. (3). ITS IMPLEMENTATION 

The forcing functions were obtained from three different 
cases, representing three different types of atmospheric 
situations. Cases 1 and 2 used typical mid-latitude values of 
tropospheric and lower stratospheric stability for N’. (The 
ranges of nondimensional values were 0.166 to 0.587 and 
0.656 to 0.331, respectively.) Case 1 was very simple, with 
one high pressure and one low pressure region super- 
imposed on an idealized west to east mid-latitude flow. 
(Details of the “QG” model used to generate the pressure 
data which was used as input for the forcing functions can 
be found in Mudrick [2O]; case 1 is labelled ZQG-INT in 
that paper.) Case 2 used a similar west to east “basic state” 
flow, but two “highs” and two “lows” were superimposed. 
Their interaction produced a more realistic and complicated 
evolution and hence a more complicated pattern of w. 
Case 3 was similar in appearance (initially) to case 1 but a 
lower value of tropospheric stability was specified; i.e., NZ in 
Eq. (3) was reduced. The result was that the number of 
iterations required for convergence of case 3 increased 
significantly. This was due to wider range of values of N2, 
increasing the asymmetry in the coefficient matrix (the 
range of N* values were 0.053 to 2.418), compared to the 
less nonsymmetric cases 1 and 2 as presented in Figs. 1 and 
2 for both GMRES and SOR. The increase was much more 
pronounced for SOR; see Fig. 1. In what follows, case 2 
is emphasized; it represents more typical and realistic 
atmospheric conditions than the other two cases. 

Here we consider only the implementation of the 
GMRES method. Following [S, 28-301, we try to sketch 
the essential points of the algorithm. Theoretical details can 
be found in these references. 

The GMRES method basically minimizes a norm of the 
residual at each step over a subspace. The subspace 
increases with the number of iterations and, therefore, the 
number of vectors requiring storage and operations will be 
increased. Thus, we use the algorithm iteratively by 
restarting it every m iterations. This restarted version of 
GMRES is denoted as GMRES(m) by Saad and Schultz 
[29]. For brevity, we mostly drop (m)‘s; from here on 
GMRES represents the restarted version GMRES(m). 

First we establish some notation. Matrices are denoted by 
capital letters; vectors and scalars are denoted by lower case 
letters. Column vectors of matrices, iteration steps, and 
dimensions of vectors are indicated by subscripts, and 
vector elements are shown in parentheses. 

In brief, the GMRES method begins with an initial 
approximate solution to Eq. (1) of x0 and initial residual 
ro=b-AX*. It then computes an approximate solution 
x~= x0 + zl, at the jth iteration, where z,. belongs to a 
Krylov subspace q= span(r,, AYE, . . . . AJ-‘r,} whose 
residual norm Ilb - AXE I/ is a minimum. Here (1. (( denotes 
the Euclidian norm (i.e., llxll = (xf + xz + . . . + xz)“‘). 

The method uses a modified Gram-Schmidt process (see 
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[S] ) in the Arnoldi iteration. An orthonormal basis 
V nxm= cu 1 > ..., v,] (i.e., vTv,=O for if j and vTvj= 1 for 
i=j) for the Krylov subspace is generated. The matrix A 
can then be transformed into an upper-Hessenberg matrix 
H mxm (i.e., h, = 0 if i > j + 1) through the relation 

VkAd’mn=fL.,. 

If we let ul=rO/llr,,//, p= I/rOj/, and let X denote the 
m x m + 1 matrix obtained by appending to H,,, x m a row 
with a single nonzero entry h,, l,m in column m, then the 
Arnoldi basis matrices V, x m and Xm + i x m would satisfy 

A(u , 9 *.., hJ=(~,,...~%7+,)~ 

or 

j+l 

Avj= 1 hvv, for l<j<m. 
i= I 

Since vi is known, we can start to generate nonzero 
elements of Zkj and V,, x k, wherek=j+l.Forj=l tom, 

h, = vf Au, for i= 1 toj, 

then 

where 

Oj+l =rj/llrjl19 

rj=Avi- i hgvi. 
i=l 

With these orthonormal bases and upper-Hessenberg 
matrices an approximate solution xj = x,, + zj is extracted 
from the solution of the least squares problem 

min ~~b-A(x,,+zj)~~ =min /[Be, -Xkjyjll for-y,, 

where e, is the unit vector e, = ( 1, 0, . . . . O)T, and zj = V, x j yj 
at the jth iteration. 

Hence, the GMRES iterate is given by x0 + V, x j yj, and 
yj is the solution to the upper-Hessenberg least squares 
problem. This problem is easily solved by factoring 
YZ&= QkkRki, where Qkk is a product of Givens rotations 
(see [S]) and Rki is an upper-triangular matrix, whose last 
row is zero. 

In this case, since Qkk is unitary (i.e., Q’Q = I), we have 
min 11 g, - R, yj II for yi. This minimization is achieved by 
back-solving the triangular system 

where g is the transformed right-hand side, and here we 

have removed the last row (j + 1) of R, and the last compo- 
nent of g. This provides yj, and then an approximate solu- 
tion xi for the linear equation system (l), and thus Eq. (3). 

Note that Givens rotations also allow a very important 
feature for practical GMRES implementation; the absolute 
value of the last component of g, g(k), is just the norm of 
the residual vector rj. The residual at every iteration, 
therefore, can be determined without actually having to 
compute x, [29]. 

Another important factor in the success of preconditioned 
GMRES is the application of a preconditioning technique. 
This transforms the original linear system into one which 
has a better eigenvalue spectrum and thus requires fewer 
iterations without greatly increasing the cost of each 
iteration. 

We thus solve the preconditioned linear system 

M-‘Ax=M-‘b, (4) 

instead of solving (1). This is discussed further in Sec- 
tion 4.3. 

The above discussion suggests the following algorithm for 
general preconditioned GMRES implementations. 

ALGORITHM. Iterative preconditioned GMRES(m). 

1. Start: 

(i) Choose x0 and a dimension m of the Krylov subspace. 

(ii) Set-up a preconditioner matrix MZ A and factorize 
it, if necessary (see Section 4.3). 

2. Arnoldi process: 

(i)Initialize; r. + M-‘(6 - Ax,), p + llroll, and 
c(l)+P. 

(ii) Gram-Schmidt orthogonalization: 

Forj= 1 to m 

if /I # 0, then vi t rjp, //?; otherwise STOP. 

w+-M-‘Avj,andrj+-w 

fori=l toj,h,cvfw,andrj+-r,-h,v,. 

/?+Ilr,ll,andk=j+l 
h, c p, and c(k) e 0. 

3. Factor the upper-Hessenberg matrix Zkj; Q&%$, = R,. 

4. Obtain residual norm of the approximate solution xi; 
g(k) = Qkkck. 

5. Make decision to form the approximate solution and 
restart the algorithm: 

if [g(k)1 >E and j<m, then (go to 2(ii)) next j. 

if I g(k)1 < E or j = m, then first solve the least 
squares problem min 11 gk - R, Yj II for Yj, 
and then Xi + X0 i- vkj Yj. 

if I g(k)1 < E, then STOP; otherwise x0 + Xj 

and (go to step (2)) RESTART. 
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In summary, the above iterative GMRES algorithm 
computes a new direction vector vi in the Krylov subspace 
spanned by vi, . . . . A’- ‘ui and orthogonalizes it against 
all the previous ones which have to be stored. After several 
search vectors are computed by GMRES, a global mini- 
mization problem is solved. 

4. COMPUTATIONAL PROCEDURE AND 
NUMERICAL RESULTS 

In this section, we describe results that illustrate the 
behavior and effectiveness of the iterative methods. The 
numerical experiments described in this section were coded 
in FORTRAN and were carried out on an IBM 3090-1705 
scientific vector computer, using double precision. No out- 
of-core memory was used. We optimized every loop that 
could be vectorized by IBM 3090 vector facility (VF), a 
hardware feature that provides significantly faster run time 
for eligible code. No efforts, however, were made to start 
iterations with a good initial guess vector; we used the initial 
guess vector x0 = 0. 

4.1. Storage 

In the above iterative GMRES algorithm, three computa- 
tional kernels may be easily identified: dot products and 
vector updates, sparse matrix-vector products, and the 
application of M - ‘. Potentially time consuming opera- 
tions, such as the sparse matrix-vector product and the 
implementation of the preconditioner matrix M, deserve 
particular attention. 

We first observe that these operations can be performed 
by diagonals, since our matrices are regularly structured. In 
general, matrices with regular sparseness patterns are stored 
by their diagonals so that the matrix-vector product 
involves contiguous memory locations and no indirect 
addressing is necessary. Thus, instead of regenerating 
nonzero elements of matrix A, only the nonzero diagonals 
of matrix A are stored to allow efficient vectorization of 
computational kernels [24]. The matrices generated by the 
2D and 3D discretizations of a PDE on a regular grid have 
sparseness patterns of this sort. 

We therefore applied ITPACK/ELLPACK’s general 
storage approach to store the entries of our matrices in the 
coef-jcoef sparse nonsymmetric diagonal format. This 
allows us to exploit the sparsity in the computations and it 
allows some of the computational kernels to be efficiently 
vectorized [24, 251. Here coef is a real array of size n-by- 
maxj, which contains the nonzero diagonals of A in its 
columns. The maxj is the maximum number of nonzeros per 
row of A. Upper diagonals are top-justified and lower 
diagonals are bottom-justified so that all rows have the 
same length. The jcoef is an integer, n x maxj array 
containing integers giving the distance (positive for upper 

581/102/2-9 

diagonals, negative for lower diagonals) of each diagonal 
from the main diagonal. 

We used live-point (for 2D) and seven-point (for 3D) 
finite difference schemes to discretize our elliptic problems, 
and the resulting matrices were live-banded and mainly 
nine-banded. (In addition to the seven usual diagonals in 
the 3D matrix, we have two extra bands due to the cyclic 
boundary conditions; these bands, however, consist of a few 
ones.) Doing this, the storage requirement for the coefficient 
matrices turns out to be 10 x n instead of n x n, where for 
our 3D problems, n is 5832 for 7800 unknowns in low 
resolution, and n is 88,972 for 100,440 unknowns in high 
resolution. (For more detail on storage and cost of com- 
putations in GMRES see [29].) Thus, storing those few 
nonzero entries of the matrix saves us from a large storage 
requirement and I/O costs. The storage requirements for 
GMRES methods, however, are substantially larger than 
those of the SOR method, and it increases as m increases; 
e.g., [ 10, 291. But, as will be shown below, a reasonably 
small value of m = 15 turns out to be adequate for our 
purposes; this reduces the storage requirements, even for 
our high resolution problem, to reasonable values. 

The code for sparse matrix-vector multiplication with the 
above storage scheme is given by Oppe et al. [24, p. 2901. 

4.2. Efficiency and Robustness 

GMRES is effective for solving nonsymmetric linear 
systems arising from the discretization of elliptic problems, 
but little of convergence theory carries over to the non- 
symmetric case (see [ 10,213, and Saad’s papers for more 
discussion). 

From widely varying and somewhat arbitrary test 
procedures for stopping criteria, we chose to monitor 
the Euclidian norm of the true residual vectors, Ilrjll = 
II M ~ ‘(b - Ax,) 11. Each step of an iterative method is subject 
to rounding error as well as the initial values of the 
elements of A and b being subject to several other types of 
errors, so it is necessary to check the accuracy of the final 
solution by insertion into the original equation, e.g., [ 121. 
Moreover, since the norm of the residual vector gives the 
same weight to large and small error components over the 
grid points, e.g., [22], the small norms of residual vectors 
are not always the best indicators of small errors. We there- 
fore conducted a few tests with different stopping criteria E 
in order to extract a satisfactory approximate solution 
without being affected by the limits of the machine preci- 
sion. A stopping criterion of E = lo- l4 was thus chosen and 
used for computations. The typical magnitude of the vertical 
motion was lo-* or lo-‘. In all cases, the iteration process 
was terminated either when the norm of the residual vector 
was equal to or less than E, or after n steps for GMRES, and 
1500 steps for SOR. Like the GMRES cases where we 
monitored llri I(, which was estimated without explicitly 
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computing xj at every iteration step, for the convergence 
criterion at each iteration of SOR we checked the norm of 
the true residuals, /lr,-il = I/(&Ax,)lj, which was obtained 
dynamically (i.e., computed during the relaxation sweep, 
e.g., C71). 

We will now discuss the results. Some aspects of the per- 
formance of GMRES without any preconditioning, as well 
as SOR, will be included as benchmarks. Results from the 
three meteorological cases are displayed in Fig. 1 for the 
SOR solutions (the “V” shaped curves) and for the Jacobi 
preconditioned GMRES (J-GMRES, see Section 4.3). 
These results are for the 3D equation from the low resolu- 
tion problem; they show the number of iterations needed for 
convergence and the CPU time required. The upper x axis 
of Figs. 1 and 2 shows the relaxation parameter y for the 
SOR method while the lower x axis shows the Krylov sub- 
space dimension m for the J-GMRES method. Figure 1 thus 
compares the performance of the J-GMRES and the SOR 
methods for our three cases as a function of y and m for the 
3D low resolution problem. Figure 2 presents similar 
results, but only for case 2, for both the 2D and 3D equa- 
tions, for the high resolution problem. Note that the dashed 
lines refer to CPU time; the solid ones refer to the iterations 
required for convergence. 

According to Ashkenazi [3, 51 and many others, the 
SOR method is one of the simplest to use of the iterative 
methods. The simplicity of the concept and the ease of 
programming and operation are, for many users, the 
essence of SOR. However, as seen from Figs. 1 and 2, the 
automatic application of a random y, without due precau- 
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tion, could greatly worsen the rate of convergence. The 
figures also show that y has to be known to at least three 
digits to guarantee optimum performance, a knowledge 
which is difficult to obtain in real applications. This 
sensitivity to y is a well-known feature of SOR, as pointed 
out by Wachspress [37, p. 2821. Thus, it is clear that the 
effectiveness of the SOR method depends strongly upon the 
selection of an optimization parameter which is not readily 
available. 

The GMRES algorithm can be seen from Figs. 1 and 2 to 
be far less sensitive to the choice of m than is SOR to the 
choice of y. Figure 1 makes it clear that SOR shows sen- 
sitivity to y and to the varying structure of the coefficient 
matrix A, while the number of iterations for J-GMRES, 
both with varying m, and A, is relatively constant. This was 
mentioned in Section 2. 

For the high resolution problem, Fig. 2 shows that the 
SOR method requires less CPU time only when y is close to 
yap,. With m chosen - 15, for both the 3D high resolution 
problem (Fig. 2) and for all three cases for the 3D low 
resolution problem (Fig. 1 ), J-GMRES is seen to be 
competitive with SOR, unless extra effort is expended 
to find yO,*. 

The rate of convergence of the classical iterative methods, 
such as SOR, depends on the resolution, with higher resolu- 
tion resulting in slower convergence [7]. We thus checked 
the convergence rates for the GMRES methods. Form = 15, 
GMRES without preconditioning and for the low resolu- 
tion 3D problem required 5.97 s to converge, using 168 
iterations, or 0.0355 s/iteration (Fig. 5). The 3D high 
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FIG. 2. Performance of the J-GMRES and the SOR methods as a function of y and m. Dashed lines show the total CPU time, and solid lines show 
the number of iterations. 
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resolution problem required 244.16 s to converge, using 608 
iterations, or 0.402 s/iterations (Fig. 71, more than a tenfold 
increase in time/iteration, similar to the ratio of the increase 
in resolution. The J-GMRES method, also with m = 15, 
gives better times, but shows a similar increase in time/ 
iteration for the 3D versus the 2D problem (Figs. 5 and 7). 
In addition, the convergence rate in general decreases as the 
Krylov subspace dimension m increases. 

4.3. Preconditioning and Preconditioners 

A suitable preconditioner is crucial in obtaining a rapid 
convergence of CG-type methods, and choosing good pre- 
conditioners for general matrices is an important research 
issue [lo, 111. According to Nachtigal et al., [21], the 
convergence rate of GMRES depends on its eigenvalues; 
thus, by applying a preconditioner to GMRES we wish to 
cluster the eigenvalues in the right half of the complex plane 
and/or to improve the distribution of eigenvalues, thereby 
significantly accelerating the convergence of the method 
[31, 341. 

Preconditioning will increase the amount of computa- 
tion. We have to compute matrix vector products M -‘Au, 
besides Auj for each iteration step. Thus, in choosing a pre- 
conditioner we must select between methods which usually 
perform a large number of cheap iterations or a small num- 
ber of expensive iterations [24]. The CPU computation 
time in seconds includes both the time required for the 
implementation of the preconditioner and the total itera- 
tions required for convergence. 

We will try some of the basic preconditioners [ 111, and 
a relatively new class, incomplete LU factorization (ILU) of 
the matrix A [ 191. The ILU factorization of A, M= LU, 
where L and U are lower and upper triangular matrices, 
respectively, is based on a modified Gaussian elimination 
procedure without any pivoting. For the 2D and 3D coef- 
ficient matrix A, the preconditioner A4 for the GMRES is 
chosen to be: 

ILU factorization of the entire matrix A (ILU or 
ILU-GMRES), and 

Since the desired accuracy can often be obtained by more 
than one method, a major factor in deciding upon an 
appropriate iterative procedure is the cost of computation, 
as pointed out by Wachspress [37, p. 121. In general, an 
approximate preconditioner M for Eq. (1) is any “simple” 
matrix that approximates the “essential structure” of A. 
Thus, one effective class of preconditioner is based on the 
matrix M - ’ being a good approximate inverse of A in the 
sense that M ~ ‘A z I. 

The basic preconditioners are, however, mostly based on 
the matrix splittings of A, which is based upon writing 

In this section, we briefly describe our choices for a A = D + L + U, where D is the diagonal, and L and U are 
preconditioning operator M, and their effects on the cost of strictly lower and upper triangular matrices, respectively. 

LU factorization of only the tridiagonal of matrix A 
(3B or 3B-GMRES). 

computation. We did not want to spend too much effort in 
finding ways to construct an effective preconditioner. Based 
on previous studies [ 10,241, we used left preconditioning in 
all numerical experiments. (For more discussion on 
preconditioning of iterative methods see [4] and its 
references.) 
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They are chosen to be: 

Jacobi (J-GMRES): M=D 

Gauss-Seidel (G or G-GMRES): M = D + L 

Successive over-relaxation (S or S-GMRES): 

M=y-‘D+L. 

With the choice y= 1, the S-GMRES reduces to 
G-GMRES. 

In using SOR as a PDE solver, one needs an estimate of 
the optimal relaxation parameter yopt. One cannot, 
however, calculate yopt in advance, as discussed in Section 1; 
in general, we have to rely on “trial and error” to find a good 
value (see Figs. 1 and 2). Computing of yopt for each 
different problem can require significant extra work. Using 
the SOR method to solve the equations similar to (3) on 
naturally ordered 2D and 3D grids (i.e., grid points were 
numbered from left to right and bottom to top), we mostly 
tried over-relaxation values; 1 < y < 2. 

We find, however, that the convergence rates as a func- 
tion of y are quite different depending on whether SOR is 
used as a PDE solver or whether 
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This is different from the 2D low resolution problem; com- 
pare Figs. 4 and 6. In the 3D high resolution problem, the 
superiority of the Jacobi preconditioner becomes more 
clear; see Fig. 7. Since J-GMRES appeared to be the best 
all-around preconditioner we tested, it was used as a com- 
parison to SOR in Figs. 1 and 2. Figure 7 also shows that, 
although ILU-GMRES requires less iteration steps to 
converge, it requires more CPU time per iteration than does 
the GMRES method without preconditioning. 

In the low resolution 2D and 3D problems, the required 
CPU time shows a definite increase with the subspace 
dimension (Figs. 4 and 5). For the high resolution 2D and 
3D problem, the S-GMRES cases tend to behave in a 
similar manner, while the other cases are not as subspace 
dimension dependent (Figs. 6 and 7). These results seem 
inconsistent. We also note from the left-hand portion of 
these figures, that as the matrix dimension and the grid size 
increases different preconditioners require almost the same 
number of iterations but different CPU time per iteration. 

The reason behind these may be given by two factors, as 
indicated in the IBM 3090 VF compiler output from our 
runs: First, the length of the vectors in the 2D low resolution 
problem is too short for effective vectorization, and 
second, in the preconditioner algorithms (except Jacobi), 
dependence of successive vectorial operations on the same 
vector elements somewhat inhibits the vectorization of the 
loop operations. 

While most of the kernels of the preconditioned GMRES 
algorithms are vectorizable, the incomplete factorization 
and the forward and back solvers in the sparse systems of 
the preconditioners are recursive operations that cannot be 
vectorized efficiently. Many alternative types of precondi- 
tioners could therefore be considered. Among the others, 
Aschraft and Grimes [2] developed the wavefront techni- 
que to vectorize ILU and symmetric SOR preconditioners 
for the CG method. It remains to be seen if the application 
of a wavefront technique to our ILU preconditioner would 
produce a trade-off of its high iteration number with very 
fast operations, and thus a reduction in CPU time for our 
3D high resolution problem. 

Our results indicate that the vectorization is more 
effective and efficient only if the vectors are relatively large, 
as in the 3D problems. Otherwise, vectorial operations are 
done only in a scaler manner on the IBM 3090-1705. 

5. CONCLUSIONS 

In this paper we consider a relatively new and general 
iterative procedure for solving a large, sparse linear system 
of equations, specifically, 3D elliptic equations. Although it 
is difficult to make any definite statements as to an overall 
“best” method, we proceed by checking the relative merits of 
the various iterative methods. 

First, it is well known that the SOR method requires 
properties such as diagonal dominance or positive delinite- 
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ness of the systems of equations, and sometimes symmetry, 
for the theoretical properties of the method to be valid. 
Second, while a Krylov subspace dimension is used in 
GMRES(m), it has been found that its value is far less criti- 
cal than the relaxation parameter for SOR. Indeed a large 
enough Krylov subspace dimension, such as m = 15, seems 
adequate, if not ideal, for a range of different problems. 
Third, the rate of convergence obtained has generally been 
found to be very good with preconditioned GMRES(m). 
Like SOR, for GMRES(m) methods the CPU time per grid 
point required to converge to an approximate solution is 
found to be dependent on grid resolution. Overall, 
GMRES(m), a method not yet widely used, at least in the 
meteorological community, is better than the SOR, 
especially for a large system of equations. It is simple to 
implement, and is virtually parameter free, as well as robust. 

Other techniques have limitations. For example, MUD- 
PACK and FISHPACK are limited by the requirement of 
“quantized” grid numbers in some or all directions. Such 
restrictions have not been found to be necessary for 
GMRES(m). For problems which can lit the required grids, 
these other techniques may be superior to GMRES. 

With respect to the choice of a good preconditioner, it 
seems that the simplest gives the cheapest and best results, 
especially for large systems. For 2D and low resolution 
problems, the ILU preconditioners may be preferred to the 
others. The S-GMRES preconditioner, however, is not 
recommended. For small and easier 2D problems the low 
storage methods, such as the optimal SOR method, are still 
worth using, The iterative preconditioned GMRES(m) 
algorithm, as a general PDE solver, is a viable alternative 
for large, sparse, and nonsymmetric linear systems arising 
from fluid dynamics problems, 

Further research for improving the efficiency of precondi- 
tioned GMRES(m) could involve choosing a better initial 
guess vector and a good restart procedure and improving 
the preconditioners by adapting wavefront or similar 
techniques. 
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